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Fig. 2. Dispersion curves for & inhomogeneous 10SSY dielectric where
K is defined by K = E“16’. The dotted line represents dispersion
cKur~eg,~ the homogeneous loading of average permittivit y when
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Fig, 3. Loss curves for an inhomogeneous 10SSY dielectric TE,o mode;
TEw mode, and LSEU mode. Comparison is made with a homogeneous

10SSYdielectric (dotted line) for the TE,o mode.

with waveguides containing solid-state materials whose dielectric
properties vary over distances which cannot be neglected compared.

to a wavelength. However, for those problems where the dielectric
material is accurately modeled by a small number of dielectric slabs,

our method is cumbersome owing to the step discontinuities. In those

cases, the reader is advised to follow one of the referenced procedures.
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Operation Modes of a Waveguide Y Circulator

YOSHIHIKO AKAIWA

Afrstract-Operation modes of a waveguide Y circulator with a

circuktr and a triangular ferrite post are investigated both theoret-

ically and exjerimehtally. Field analysis is carried out taking into

consideratiori the field vsriatioii along the ferrite axis. Frequencies

are .cslcdated by assuming TM modes nearly agree with meas-

ured frequencies. It is shown that the circ~ator action occurs at

frequencies where two HE modes interfere with each other, besides

occurring at HE mode resonance frequencies. Effects of Teflon

spacers on circulator performances are investigated in detail.

I. INTRODUCTION

The waveguide Y circulator has been widely used in microwave

circuits since the first introduction by Chait and Curry [1] in 1959.
The design concepts are based on the general theory of the scattering
matrix established by Auld [2] and on theories of field analyses by
Bosma [33 and Fay and Comstock [4]. These theoiies are not

sufficient, since the scattering matrix theory never shows internal

fields of the circulator and the field analysis theory is for stripline

circulators.
Determination of operation modes is most important for circulator

design, since the circulation occurs at the mode resonance frequencies.
Surface wave modes had been considered by Skornal [5] to explain

the circulation, however, experiments were not carried out to assert
the surfaces wave modes. Little has been known about the waveguide
circulator modes for a long time. P~ecently, Owen [6] first clarified
the operation modes of a waveguide Y circulator by measuring the
eigenvalues. He showed for partial height f errites that fields vary
along the axis of the ferrite and clearly showed that circulator
operation is obtained at the resonance frequencies of the ferrite for
rotational phase eigen excitations. He identified the ferrite resonance
modes as HEnnz modes. The fact that the fields vary along the axis

of ferrite has not been taken into consideration in waveguide cir- ‘
culator theories developed before [7], [8].

Although field analysis was carried out taking into consideration

the variatirsn along the ferrite post axis for a demagnetized ferrite

post, the ferrite resonance phenomena was not recognized to be
important for circulator operation and the operation modes were
not discussed [9].
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This short paper reports both theoretical and experimental investi-
rrations of wavemide Y-circulator o~eration modes. Field analvsis
Y
IS carried out for a circular and a triangular ferrite post taking i“nto
consideration the field variation along the ferrite post axis. Operation

modes are investigated experiment ally by measuring transmission

losses, input impedance, and eigenvalues as a function of frequency.

Measured resonance frequencies are compared with the calculated

frequencies. Effects of a Teflon spacer on circulator performances

are investigated in detail.

II. FIELDS AND RESONANCE FREQUENCY OF A
CIRCULAR FERRITE POST

TM modes with respect to the axis of a circular ferrite post are

assumed, since we are considering the H-plane Y-junction circu-
lators. Coordinates are shown in Fig. 1. Assuming the fields are

expressed as follows:

* = P(r) exp [j(ktz + mo – ~t)] (1)

the following equation is given for the Z component of the electric
field:

a2Ez 1 dE.

[
~+;~+ @~

()1

(6YJ – lc12/w6)’ – (w.)z m ‘
— — E, = o (2)

cop — lr2/we T

where AI and K are the components of the tensor permeability z

()
u –j. o

~=jKpO.

001

(3)

When the ferrite anisotropy is small, i.e., K/p <<1, (2) is approxi-
mated as follows:

(4)

Fields are given as follows:

.exp [j(ktz +m@)] (8)

H.=0 (9)

(lo)

where .J~ (z ) is the Bessel function of order m. It is assumed that the
ferrite is open circuited at the side wall, since the relative dielectric

constant is much larger than unity. Then the tangential components
should vanish at the wall, i.e., H+ = O at r = R. It can be easily
shown that resonance frequencies for two rotational phase eigen
excitations, are split because of the existence of K/p in (8). Also,

bottom and top surfaces of the ferrite post are assumed to be short
or open circuited. The propagation constant kz is given as follows:

ki = (1/L)rr (12)

where L is the length of the ferrite and 1 is given as follows:

1 = 0,1,2,... (both surfaces are short circuited) (13)

1 = 1,2,3,... (both surfaces are open circuited ) (14)

ti-

/+-,. +,.
r

Fig. 1. Coordirmtaz for a circular ferrites post.

1 = 0.51525 . . .). ?., (one surface is open circuited and another

is short circuited). (15)

When, the ferrite is demagnetized (K/P = O)? the resonance fre-

quencies for rotational phase eigen excitations are degenerate and

can be obtained as follows:

[%.’ + (Rmr)’y’f=;=
27r(w)l12R

(16)

where A. is the nth root of Jm’ (z ) = O. The integer m does not
take the value of zero or the value of multiples of three owing to the
field symmetry for the rotational phase eigen excitations.

Resonance modes are designated TMm.ZZI. ‘Z where Z, and Zz
represent the impedance at the bottom and top surfaces, respectively.
For example, TM~.lOm indicates that the bottom surface is short
circuited and the top surf ace is open circuited.

When the ferrite boundary surf aces are not completely open cir-
cuited, fields exist outside of the ferrite post. In this case, the bound-

ary conditions that tangential components should be continuous at

the side wall, are satisfied only when kl = O if the ferrite post is

magnetized, and when kl = O or m = O if the ferrite post is demag-
netized. For the other modes, TM modes themselves cannot satisfy
the boundary conditions and hybrid modes which have both E. and
HZ should be employed. However, it can be considered that the

hybrid mode fields are not so very different from the TM mode
fields, since the ferrite dielectric constant is much larger than unity.
Therefore, calculated TM mode frequencies assuming perfect open

boundary may not be very different from measured frequencies.
For the cases kl = O or m = O, the boundary conditions are reduced

to the following equations [10], [11]:

e J~’ (kiR) Q, H~@j’ (kOR)

m J. (k,R) = FR H.(Z) (kOR)
(17 )

where k, and ko are radial propagation constants inside and outside

the ferrite post, respectively, and are given as follows:

k, = (co%~ – kt2)1i2 (18)

k. = (a%.p – kf)l(z. (19)

The open boundary conditions at the bottom or top surface can

not be satisfied for any TM modes if the ferrite post is magnetized

and can be satisfied for any TM modes if the ferrite post is demag-

netized. For the demagnetized ferrite post, the conditions are reduced

to the following equation [12]:

(kJe) tan (id.) = – (kz~/e.) tan [k,. (b – L)] (20)

where b is the height of the waveguide, kl and kl. are the longitudinal
propagation constants inside and outside the ferrite post, respec-

tively, and are given as follows:

kl = (@%p – Ic))llj (21)

It is useful to note that the resonance modes, for example Hl?llloo,

having symmetrical fields with respect to the plane which cuts the
Y junction horizontally just at the middle point of the waveguide
height, can not be excited, since the waveguide TE,, mode has anti-

syrnmetric fields with respect to the previously described horizontal
plane. When that symmetry of a waveguide Y junction is not per-

fect, the symmetric resonance modes can be excited and often

appear near the operation modes. For example, HEI,Ioo mode appears
near HEnlmrn modes. The former is effectively excluded by inserting
a metal plate at the middle of the ferrite post.



956 IEEE TRANSACTIONS ON MICROWAV$3 THEORY AND TECHNIQUES, NOVEMBER 1974

III. EXPERIMENTS

A Y junction is made of X-band wavegnides whose inside dimen-

sions are 11.43 X 22.86 gun, considering the application to other
frequency ’bands in Which waveguide inside dimensions have the

ratio of 1:2. Broad-band rnatchlng sections areintroduced to match

the measuring wayeguide system which hss 10.16- X22.86-m”rn
dmensions. For the convenience of loading a ferrite post, thin plates

(15-mm diam x 0.3 mm thick) are mounted at the top and ‘bottom

of the center of the Y junction. A ferrite post is mounted on the

plate with epoxy resin.
Fig.,,2 shows transmission losses. Forward and backward losses

are me’asured by reversing the polarity of the applied field. There are

three operating regions in a waveguide band. The direction of circu-
lation at the middle region is opposite to those at the other regions.

Input impedance of the circulator is shown in llg. 3. The reference
plane is chosen arbitrarily.

To identify those operation modes, resonance frequen~y depen-

dence on length and diameter is determined. Results are shown in
Fig. 4 for a 6-mm-diam ferrite post and in Fig. 5 for a 5.4-mm-diam
ferrite post. The resonance frequencies are measured by measuring

the input impedance as a function of frequency. Ckcled arrows

0. 4d4s =420 @3USS , <=13 , H=350 0s

10.

20.

0

i

FREQUENCY IN ciliz

9 I,0 II t?

? @
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I I , , I
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I I I ! I

sion-s;

FREQuENcY IN GHz
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@
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9 10 II

FREQUENCY IN GI-Iz

Fig. 2. Transmission losses of the circulator.

I D=2R=6mm i D=2R=54mm
I ,

L -- CAL (f) MEb [f’) %.1 ~&L(,,MEA,+,f&,oo

v47h@ = 420qauss , 6=13 , H= 160 Oe

Fig. 5. Res?nance frequencies obtained by measuring input impedance
as a fUnOtlOn of frecJUencJ’. Ferrl$e, posy diameter is 5.4 mm. Figure
explanations are the same as those m Fig. 4.

are for no dc applied field. The larger arrows represent overcoupled

caees and the smaller arrows represent undercoupled cases. For
arrows in the same row, the same field is applied. The mode for the

middle operating region dieappears as the applied field is diminished

and ss the ferrite post length becomes short. The modes which exist

even when no field is applied, exist for any value of diameter and
length. These modes are HEII ~Omas Owen [6] identified previously,

“Measured resonance frequencies are compared with frequencies
calculated by (16) in Table I. The frequency dependence on length
and diameter are well explained by the TM-mode theory. The

agreement between meseured and calculated values is better for
HElll.& than for HE11o.F’.

TABLE I

COMPARISON OF MEASURED HE,lZOrn MODE AND CALCULATED

TM @o’ MODE FREQUENCIES

Q=o5

10 839 95 13 % 9 27 106 14 %

9 845 96 (3 932 106 1+

8 853 95 12 940 106 13

7 865 96 12 950 106 13

Q=15

I D=2R=6mm 1 D=2R=54mm
I I

L mmCAL (f] MED (’,1 $hOO CAL [f ) MEA(, >l +1OO

10 1025 1075 49% 1096 118 77%

9 1066 112 4,7 II 38 121 61

6 1126 IH6 44 11 93

7 12 06 1269Fig. 3. Input impedance of the circulator.
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Two neglected facts can be considered as reasons why the measured
o

and calculated values are different: one is the disturbance of fields — HsO Ga.ss

at the junction where the terminal wavegnide mode changes to

radial line modes and another is the assumed perfect open boundary
‘— -- H .~G@s8

conditions and therefore the assumption of a TMlno” instead of an
HEll,om mode. In order to evaluate the effect of imperfect open

41rM3 . 420GIw

boundary coniltions, the TMl# mode is investigated. Calculated
6[dla)x10 {mm>

and measured [6] values are compared in Table II. The relative 2oo-

difference in frequency takes a large value of about 30 percent. Con-
sidering the imperfect open boundary conditions, resonance fre-
quencies are recalculated [11 ] by (17). The result is shown by a ti \

solid line in Fig. 6. Measured values are shown by dots. The agree- !#
ment is very good. The theoretical curve obtained by (16) is shown

\

E
by a broken hue. Thus it is shown that the major reason for the

disagreement in calculated and measured reson ante frequencies z 400.
i

is the assumption of perfect open boundary conditions.
\

J
\ ‘ROTATIONAL PHASE
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z
g
w
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TO identif~ the m;de for the middle operating region in Fig. 2,

eigenvalues are measured as a function of frequency after Owen [6].
Results are shown in Fig. 7. When the dc magnetic field is applied,

the rotational phase eigenvalues split. However the inphase eigen.-

value is affected only very little. It is seen from Fig. 7 that two, not

three, resonances occur, causing phase rotation of 720”. One more
resonance for the middle frequency operation region does not occur,
even if the dc magnetic field is applied. Careful inspection shows that
circulator operation is possible at the middle frequency operation
region: phase separation between eigenvalues are 120”. The direc-
tion of circulation is also understood: the order of eigenvalue phase
arrangement in the middle region is opposite to those in the side

TABLE 11

COMPARISON OF MEASURED [6] AND CALCULATED FREQUENCIES FOR

TM UOOO MODE

61 79 10 1 28

66 73 96 32

71 66 90 32

76 64 64 34

/.

7.
01 6 [5 02

INVERSE OF RADIUS I mi+ 1

Fig. 6. Comparison of calculated and measured [6] resonance frequencies
for TMu# mode.

8oo -

k
\\\\\\t.Ej,‘\’’”HE;,om5 \\ ‘\

\
‘\ ~,

\
\ ‘\

\
mod \,

8
F9REQUEN:Y IN &

12

957

Fig. 7. Measured eigenvalue phases as a function of frequency. Refer-
ence plane is 11.5 mm distant from the junction center.

regions. The 240° separation between rotational phase eigenvalue

at the middle region is due to the cooperative interference of the two

resonance modes.
A method involving inserting dielectric spacers between the wave-

guide and a ferrite post has usually been adopted. For this case, the
operation mode is clarified by Owen. In this short paper, the effects

of the Teflon spacer on the circulator performance are investigated
in more detail.

Transmission losses of the circulator with a 0.5-mm-thick Teflon
spacer are shown in Fig. 8. Ferrite post dimensions are the same as
those in Fig. 2. Input impedance of the circulator calculated from

477 M, = 1000 g..,,

05 mm th,ck

. 9

FREQUENCY i?N GHz
II 12

Fig. S. Transmission losses of a circulator with a Teflon spacer-loaded
ferrite post.
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the mesmred eigenvalues is shown in Fig. 9. The 10CUSclosely repre-
sents that of the ideal resonator and, therefore, bandwidth enlarge-
ment with external resonators ie more effective, compared with the
case shown in Fig. 3. The effects of a Teflon spacer on the eigenvalues
are shown in Fig. 10. Since the relative dielectric constant of Teflon
is much smaller than that of ferrite, it can be considered that the
open-circuit condition can be approximately satisfied. The operation

TABLE III
COMPARISON OF I’Vb:URISD HE1l,I”” MODE AND CALCULATED

““ MODE FREQUENCIES

Fig. 9. Input impedance of a circulator with a Teflon spacer-loaded
ferrite post oaloulated using the meawn’ed eigenvalues.

o

20(

I Oc ~ 1(-) II k=-.- .—
FREQUENCY IN GHz

Fig. 10. Effects of a Teflon $pamr on degenerated rotational phase
elgenvalues.

mode is HEuIMM. Comparison of measured frequencies and fre-
quencies calculated by (16) is made in Table III. Relative difference
is about 10 percent. The frequency dependence on the ferrite post
length is explained well.

The interval between resonance frequencies is more widespread
for HE~nz”” modes than HE~.lOm modes. This is one of the reasons
that dielectric spacers are usually employed.

The other resonance modes which have not been identified show
a very little dip in input impedance locus and circulation never
occurs at these mode frequencies.

IV. OPERATION MODES WITH A
TRIANGULAR FERRITE POST

A triangular ferrite post has also been used in a waveguide Y

circulator. Circulator construction is shown in Fig. 1L The operation

of a circulator with a triangular ferrite post is so far understood only
qualitatively where a broad-band matching effect is added to the
operation with a circular ferrite post. Recently, it has been shown
[13] that field analysis can be carried out for a triangular demag-
netized ferrite Dost bv amivirw the triangular metal waveguide

field theory [143. “ ‘- - -
The fields and resonance frequency are rewritten briefly. Since

there are dual boundarv conditions at a metal surface and open-
circuit boundary of a ferrite surface, fields in a triangular ferrite

post can be determined from fields in a triangular metal waveguide

by the duality concept [12]. To consider TM modes in the ferrite

post, TE fields of the waveguide should be employed. Fields for
TE modes in the waveguide have been solved as follows [14]:

(23 )

(24)

+Cos[:m(:+b)lcosf%(:’--z)”

(~.–.,
metal plate

4rite
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,
,4

0.—

2

Fig. 12. Coordinates of a triangular ferrite post.

where 1, m, and n are” integers, never take zero value simultaneously,
and must satisfy the following equation:

l+m+rz=O (26 )

and where b is the radius of an inscribed circle of the triangle. The

illustration of coordinates is shown in Fig. 12. The other fields are

derived from H,. Using the relations

82*

~, +$2= –x’+

(27)

[28)

(29 )

resonance frequency is given as follows:

[()~=z 4 ‘
2(,P)112 z ()1

(m’+mn+n’)+ ~“” (30)

where a is the length of the sides of, the triangle, i.e., a = 2tib, and
the iuteger p is the same as 1 in (13 )– ( 15 ). Fields in the ferrite post
are derived by the interchange H - — E, E * H, e ~ p, p ~ c.
Resonance frequency never changes with the interchange. Modes
are designated as TM(l ,~,n)Pzl,’2 for convenience.

When the ferrite anieotropy is small, fields in a magnetized ferrite
are approximately given by the following equations as the previous

case for a circular ferrite post:

H.=0 (33)

Ez=_j!!Hg (34)
ox

(35)

where E. is given from (23) by the interchange.
A comparison between frequencim calculated by (30), assuming

TM(l_lO)lmo mode, and measured center frequencies of Y circulators
developed by Nippon Electric Company are shown in Fig. 13.

Measured frequencies fall fairly well on a straight line, as the theory
predicts, although they are about 20 percent higher than calculated
values. To obtain theoretically more precise frequency, the imperfect
open boundary conditions should be considered.

A sketch of the field pattern is shown in Fig. 14. The field pattern
rotates to the rotational phase eigen excitations. It is seen thai cir-
cularly rotating magnetic fields are generated at the central part of

the triangle.

V. CONCLUSION

Fields in a circular and a triangular ferrite post are solved taking
into consideration the variation along the ferrite axis. Measured
HE mode operation frequencies nearly agree with the calculated

so-

.

60

.

2
cl

40 -
~

. mowed volue

-–- Theory

>
u
z
w
3
0
IIJ 20
m
L

0
0 01

Fig. 13. Comparison of measured center frequencies and calculated
resonance frequencies assuming a TM mode.

Fig. 14. Sketch of fields pattern for TM (1–Io) mode. Solid lines represent
magnetic field. Broken lines represent null magnetic field.

frequencies obtained by assuming a TM mode and perfect open-

circuited boundary conditions. It is shown that the circulation occurs
at the frequencies where two HE modes interfere with each other,

besides occurring at HE mode resonance frequencies.
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Experimental Distinction Between Crossed-Field and

In-Line Three-Port Circuit Models for Interdigital

Transducers

W. RICHARD SMITH

Abstract—The crossed-field sndin-line Mason circuit models for

interdigitrd surface-wave transducers give opposite predictions for

the dependence of acoustic reflection coefficients on electric load

resistance for purely resistive loads. Experiments described herein

show that the crossed-field model correctly describes the reflections

for YX quartz, ST-X quartz, and YZlithiumniobate substrates. A

low-resistance load ~lzes reflections for transducers with

double electrodes operating at the fundamental synchronous fre-

quency. For single electrode transducers, optimum reflection sup-

pression may call for a load resistance comparable to the transducer

impedance.

I. INTRODUCTION

The crossed-field and in-line three-port Mason circuits [1] for

bulk-wave transducers have found wide usage as approximate

equivalent circuits for interdigital surface-wave transducers [2].
Arguments for preferring both the in-line and crossed-field models

have been suggested by various authors [3]–[6]. In addition, an

intermediate mixed model has been proposed by Milsom and Red-
wood [7]. In [8] some differences between the models are empha-

sized, and it is stated that the choice of model apparently depends
on the piezoelectric substrate.

Thk short paper provides an experimental basis for determining

which model gives the better representation of a particular inter-
digital transducer and piezoelectric substrate. In addition, it negates
a statement made earlier in [8] to the effect that the two models
predict identical results for all transducer three-port transfer proper-
ties in the weak-coupling liiit. The new finding reported here is that
measurements of transducer acoustic reflection coefficients as a
function of electric load resistance can determine which model is

applicable, since the two models predict opposite behavior for purely
resistive loads. Specific results are given in the following for “double

electrode” [9] transducers on YX quartz, ST-X quartz, and YZ
lithium niobate, and for a “single electrode” transducer on YZ

lithium niobate.

II. ACOUSTIC REFLECTIONS

The experimental distinction between the crossed-field and in-line
Mason circuits is based on measuring the acoustic reflection coeffi-
cient of a transducer as a function of the electric load. We begin by
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Fig. i. Mass/electrical loadingtrr~#c&tions of single and double elec-

dietinguishing the two causes of surface-wave reflections in inter-
digital transducers.

The first cause ie the fact that metal electrodes short out the tan-

gential electric field at the crystal surface and introduce mechanical

loading, so that the electrode and gap regions have different apparent

wave impedances [10], [11 ]. The second cause is that forward and

backward surface waves are “regenerated” in the transducer by the
voltage that the incident surface wave delivers to the electric load.
The magnitude of the regenerated surface waves can be reduced (at
a sacrifice in insertion loss) by varying the load impedance.

In ordinary eingle electrode transducer [Fig. 1 (a)], the
“mass/electrical loading” (MEL ) reflections can become par-

ticularly troublesome because the metal stripes are spaced by one-
half wavelength, causing MEL reflections to add in phase. The
double electrode geometry [9] [Fig. 1(b) ] provides a high degree

of cancellation of the MEL reflections from successive electrodes, so

that the reflections in double electrode devices are almost entirely
of the regenerated wave (RW ) type. Our purpose here is to deter-

mine a transducer circuit model which accurately describes the total

(MEL and RW) reflections with particular emphasis on their rela-
tion to the electric load.

III. MASON CIRCUIT MODELS

The Mason circuits for bulk-wave transducers have found wide

usage in surface-wave work since they give a three-port description

of interdigital transducers, either periodic or dkpersive with many

nonidentical electrodes. In order to account for the different acousti~

wave impedances of the electrode and gap regions, the circuit of
Fig. 2 has been used by at least two authors [10], [11 ]. In th~ circuit
the unit cell of length d is subdivided into a metallized and an un-

metallized region, with wave impedances Z~ and ZO in the corre-
sponding acoustic transmission lines.

Synchronous operation is detined by the condition that d be equal
to one-half acoustic wavelength (A = 2d ), and the circuit of Fig. 2

..___._E&q-c’”

———————————

Fig. 2. Mason circuit model for single electrodes, including an acoustic-
wave impedance discontinuity.


