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Fig, 3. Loss curves for an inhomogeneous lossy dielectric TE10 mode;

TEx» mode, and LSEu mode. Comparison is made with a homogeneous
lossy dielectric (dotted line) for the TEw mode.

with waveguides containing solid-state materials whose dielectric

properties vary over distances which cannot be neglected compared.

to a wavelength. However, for those problems where the dielectric
material is accurately modeled by a small number of dielectric slabs,
our method is cumbersome owing to the step discontinuities. In those
cases, the reader is advised to follow one of the referenced procedures.
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New

Operation Modes of a Waveguitie Y Ciréulator

YOSHIHIKO AKAIWA

Abstract—Operation modes of a waveguide Y circulator with a
circular and a triangular ferrite post are investigated both theoret-
ically and experimentally. Field analysis is carried out taking into
consideration the field variation along the ferrite axis. Frequencies
are calculated by assuming TM modes nearly agree with meas-
ured frequencies. It is shown that the circulator action occurs at
frequencies where two HE modes interfere with each other, besides
occurring at HE mode resonance frequencies. Effects of Teflon
spacers on circulator performances are investigated in detail.

I. INTRODUCTION

The waveguide Y circulator has been widely used in microwave
circuits since the first introduction by Chait and Curry [1] in 1959.
The design concepts are based on the general theory of the scattering
matrix established by Auld [2] and on theories of field analyses by
Bosma [3] and Fay and Comstock [47]. These theories are not
sufficient, since the scattering matrix theory never shows internal
fields of the circulator and the field analysis theory is for stripline
circulators. ) .

Determination of operation modes is most important for circulator
design, since the circulation occurs at the mode resonance frequencies.
Surface wave modes had been considered by Skomal [5] to explain
the circulation, however, experiments were not carried out to assert
the surfaces wave modes. Little has been known about the waveguide
circulator modes for a long time. Recently, Owen [6] first clarified
the operation modes of a waveguide Y circulator by measuring the
eigenvalues. He showed for partial height ferrites that fields vary
along the axis of the ferrite and clearly showed that circulator
operation is obtained at the resonance frequencies of the ferrite for
rotational phase eigen excitations. He identified the ferrite resonance
modes as HE,.; modes. The fact that the fields vary along the axis
of ferrite has not been taken into consideration in waveguide cir-
culator theories developed before [77, [8].

Although field analysis was carried out taking into consideration
the variation along the ferrite post axis for a demagnetized ferrite
post, the ferrite resonance phenomena was not recognized to be
important for circulator operation and the operation modes were
not discussed [97].

Manuscript received November 12, 1973; revised July 15, 1974.
The author is with the Central Research Laboratories, Nippon Elec~
tric Company, Ltd., Kawasaki, Japan.
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This short paper reports both theoretical and experimental investi~
gations of waveguide Y-circulator operation modes. Field analysis
is carried out for a circular and a triangular ferrite post taking into
consideration the field variation along the ferrite post axis. Operation
modes are investigated experimentally by measuring transmission
losses, input impedance, and eigenvalues as a function of frequency.
Measured resonance frequencies are compared with the calculated
frequencies. Effects of a Teflon spacer on circulator performances
are investigated in detail.

II. FIELDS AND RESONANCE FREQUENCY OF A
CIRCULAR FERRITE POST

TM modes with respect to the axis of a circular ferrite post are
assumed, since we are considering the H-plane Y-junction ecircu-
lators. Coordinates are shown in Fig. 1. Assuming the fields are
expressed as follows:

v =P(ryexp [ jkiz + m¢ — wt)] (1)

the following equation is given for the Z component of the electric

field:

*E, 10K, (wp — ki?/we)? — (wk)? m\?

—_— —— —{—=)|E.=0 (2
ar? + r or + [we wp — ki?/we (7‘) :I @)

where u and « are the components of the tensor permeability @

w —j 0
iz' = jK M 0 . (3)
0 0 1

When the ferrite anisotropy is small, ie., «/p <1, (2) is approxi-
mated as follows:

2 . Ez 2
gu. 18 +{k/2—(ﬁ)}E,=o 4)
ar? r or r

k'? = wlep — k2. (5)

where

Fields are given as follows:

B, = 2 Andn(kr) exp [0z + me)] 6)

2
T ) — ﬁJm(k/r)} exp [ (k2 + me)]
Iz K

(M

we 2
H, = ——];;_EA}n{

&
|

=) 2
= 2 A, {Jm_1<k'r> - (1 + f”’—*ﬁ)ln—w'r)]

’ ]%;—m w k) Er

cexp [ ki +me)] (8)
H,=0 (9)

k
E =-H, (10)

we
E¢ = - ']ﬂHr (11)

we

where J,, (z) is the Bessel function of order m. It is assumed that the
ferrite is open circuited at the side wall, since the relative dielectric
constant is much larger than unity. Then the tangential components
should vanish at the wall, i.e., Hy, = 0 at r = R. It can be easily
shown that resonance frequencies for two rotational phase eigen
excitations, are split because of the existence of «/u in (8). Also,
bottom and top surfaces of the ferrite post are assumed to be short
or open circuited. The propagation constant %, is given as follows:

ki = (I/L)w (12)
where L is the length of the ferrite and [ is given as follows:

1=01,2-- (both surfaces are short circuited)  (13)

1 =123, (both surfaces are open circuited ) (14)
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Fig. 1. Coordinates for a circular ferrites post.

l = 0.51.52.5,+++ - (one surface is open circuited and another

is short circuited). (15)

When -the ferrite is demagnetized (x/u = 0), the vesonance fre-
quencies for rotational phase eigen excitations are degenerate and
can be obtained as follows:

© _ [om® + (B/Llr) ]

7= o9 27 (e )12R

(16)

where &m. is the nth root of Jm’(z) = 0. The integer m does not
take the value of zero or the value of multiples of three owing to the
field symmetry for the rotational phase eigen excitations.

" Resonance modes are designated TM,,..*0#> where Z; and Z,
represent the impedance at the bottom and top surfaces, respectively.
For example, TM,,** indicates that the bottom surface is short
circuited and the top surface is open circuited.

When the ferrite boundary surfaces are not completely open cir-
cuited, fields exist outside of the ferrite post. In this case, the bound-
ary conditions that tangential components should be continuous at
the side wall, are satisfied only when k; = 0 if the ferrite post is
magnetized, and when k; = 0 or m = 0 if the ferrite post is demag-
netized. For the other modes, TM modes themselves cannot satisfy
the boundary conditions and hybrid modes which have both E, and
H, should be employed. However, it can be considered that the
hybrid mode fields are not so very different from the TM mode
fields, since the ferrite dielectric constant is much larger than unity.
Therefore, calculated TM mode frequencies assuming perfect open
boundary may not be very different from measured frequencies.
For the cases ki = 0 or m = 0, the boundary conditions are reduced
to the following equations [107, [11]:

e Ju'(kiR) & Hn®'(kR)

— = (17
kiR Jn(kR) kR H,® (kR) 17)

where k, and %, are radial propagation constants inside and outside
the ferrite post, respectively, and are given as follows:

k, (wlen — K2)l2

1l

(18)

ko = (wleu — ki2)12, (19)

The open boundary conditions at the bottom or top surface can
not be satisfied for any TM modes if the ferrite post is magnetized
and can be satisfied for any TM modes if the ferrite post is demag-
netized. For the demagnetized ferrite post, the conditions are reduced

to the following equation [127:
(ki/e) tan (kL) = — (kio/e) tan [k (b — L)] (20)

where b is the height of the waveguide, k; and k;, are the longitudinal
propagation constants inside and outside the ferrite post, respec-
tively, and are given as follows:

ki = (o — k202 (21)

ko = (wPeop — k2)12, (22)

It is useful to note that the resonance modes, for example HE;;,%,
having symmetrical fields with respect to the plane which cuts the
Y junction horizontally just at the middle point of the waveguide
height, can not be excited, since the waveguide TEy mode has anti-
symmetric fields with respect to the previously described horizontal
plane. When that symmetry of a waveguide Y junction is not per-
fect, the symmetric resonance modes can be excited and often
appear near the operation modes. For example, HE11% mode appears
near HE;;,*® modes. The former is effectively excluded by inserting
a metal plate at the middle of the ferrite post.
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III. EXPERIMENTS

A Y junction is made of X-band waveguides whose inside dimen-
sions are 11.43 X 22.86 mm, considering the application to other
frequency bands in which waveguide inside dimensions have the
ratio of 1:2. Broad-band matching sections are intréduced to match
the measuring waveguide system which has 10.16- X 22.86-mm
dimensions. For the convenience of loading a ferrite post, thin plates
(15-mm diam X 0.3 mm thick) are mounted at the top and bottom
of the center of the Y junction. A ferrite post is mounted on the
plate with epoxy resin. :

" Fig. 2 shows transmission losses. Forward and backward losses
are measured by reversing the polarity of the applied field. There are
three operating regions in a waveguide band. The direction of circu-
lation at the middle region is opposite to those at the other regions.
Input impedance of the circulator is shown in Fig. 3. The reference
plane is chosen arbitrarily. .

To identify those opération modes, resonance frequency depen-
dence on length and diameter is determined. Results are shown in
Fig. 4 for a 6-mm-diam ferrite post and in Fig. & for a 5.4-mm-diam
ferrite post. The resonance frequencies are measured by measuring
the input impedance as a function. of frequency. Circled arrows

0{ 4wMs =420 gauss , €=13 , H=350 Oe
%]
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Fig. 2. Transmission losses of the circulator.

47Ms = 420qgauss , €=13 , H=160 Oe

Fig. 3.

Input impedance of the circulator.
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Fig. 4. Resonance frequencies obtained by measuring input impedance

as a function of frequency. Ferrite post diameter is 6 mm. Circled
arrows are for no applied dc magnetic field. Larger and smaller arrows
represent overcoupled and undercoupled cases, respectively. For
arrows in the same row, the same field is aps)llied. The larger field
is applied for the arrows in the lower row for the same ferrite dimen-
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Fig. 5. Resonance frequencies obtained by measuring input impedance

as a function of frequency. Ferrite post diameter is 5.4 mm. Figure
explanations are the same as those in Fig. 4.

are for no dec applied field. The larger arrows represent overcoupled
cases and the smaller arrows represent undercoupled cases. For
arrows in the same row, the same field is applied. The mode for the
middle operating region disappears as the applied field is diminished
and as the ferrite post length becomes short. The modes which exist
even when no field is applied, exist for any value of diameter and
length. These modes are HE;;,* as Owen [6] identified previously,

Measured resonance frequencies are compared with frequencies
calculated by (16) in Table I. The frequency dependence on length
and diameter are well explained by the TM-mode theory. The
agreement between measured and calculated values is better for
HElu_sdw than for HEno_som.

TABLE I

CoMPARISON OF MEeAsurep HEy* MobeE AND
TM ;> MobpE FREQUENCIES

CALCULATED

£=05
D=2R= 6 mm D=2R=54 mm
L nm|CAL (f) MEA () L;ixloo CAL(f) MEA(f) "%’xloo
10 8 39 95 13%| 927 106 14 %
9 8 45 96 3 932 W06 14
8 |853 95 12 |240 106 13
7 8 65 9 6 t2 950 1086 13
Q=15
D =2R=6mm D=2R =54 mm
L mm [CAL t£) MEA (1) #xmo CAL (1) MEA(T") f'+'x100
10 1025 1075 49%[109% |i8 77%
9 loes 112 4.7 138 21 61
8 126 118 44 i1 93
7 12 06 12 69
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Two neglected facts can be considered as reasons why the measured
and calculated values are different: one is the disturbance of fields
at the junction where the terminal waveguide mode changes to
radial line modes and another is the assumed perfect open boundary
conditions and therefore the assumption of a TM;;** instead of an
HE;4,* mode. In order to evaluate the effect of imperfect open
boundary conditions, the TMi® mode is investigated. Caleulated
and measured [6] values are compared in Table IL. The relative
difference in frequency takes a large value of about 30 percent. Con-
sidering the imperfect open boundary conditions, resonance fre-
quencies are recalculated [117] by (17). The result is shown by a
solid line in Fig. 6. Measured values are shown by dots. The agree-
ment is very good. The theoretical curve obtained by (16) is shown
by a broken line. Thus it is shown that the major reason for the
disagreement in calculated and measured resonance frequencies
is the assumption of perfect open boundary conditions.

To identify the mode for the middle operating region in Fig. 2,
eigenvalues are measured as a function of frequency after Owen [67].
Results are shown in Fig. 7. When the dc magnetic field is applied,
the rotational phase eigenvalues split. However the inphase eigen-
value is affected only very little. It is seen from Fig, 7 that two, not
three, resonances occur, causing phase rotation of 720°. One more
resonance for the middle frequency operation region does not occur,
even if the de magnetic field is applied. Careful inspection shows that
circulator operation is possible at the middle frequency operation
region: phase separation between eigenvalues are 120°. The direc-
tion of eirculation is also understood: the order of eigenvalue phase
arrangement in the middle region is opposite to those in the side

TABLE 1I

ComparisoN oF MEAsURED [6] ANp CaLcuLaTed FREQUENCIES FOR
™ 11000 Mobs

f-=0
D=2Rmm CAL(f) MEA{t) "T-"HOO
51 95 it 6 22%
56 86 108 25
6 i 79 101 28
6 6 73 28 32
71 68 90 32
76 64 84 34

2 measured

//
104 /
/
~ /
& /
= —z theory /
= (IMPERFECT O 8 c)//
> o /
o /
g /
= /
/
/

/ﬁ-— theory (PERFECT 0 B C)

/
/

‘or G5 52
INVERSE OF RADIUS (mmi')

Comparison of calculated and measured [6] resonance frequencies
for TMue® mode.
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Fig. 6.
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Measured eigenvalue phases as a function of frequency. Refer-

Fig. 7.
ence plane is 11.5 mm distant from the junction center.

regions. The 240° separation between rotational phase eigenvalue
at the middle region is due to the cooperative interference of the two
resonance modes.

A method involving inserting dielectric spacers between the wave-
guide and a ferrite post has usually been adopted. For this case, the
operation mode is clarified by Owen. In this short paper, the effects
of the Teflon spacer on the circulator performance are investigated
in more detail.

Transmission losses of the circulator with a 0.5-mm-thick Teflon
spacer are shown in Fig. 8. Ferrite post dimensions are the same as
those in Fig. 2. Input impedance of the circulator calculated from

[¢]
o 9 H=-110 Oe
el
Z
&
47 Ms = 1000 gauss
%)
o
S
-
— 207
o
w IRV
123 ferrtt
= ~— G(DIA%X 10¢(mm)
Z tetion
o - 05 mm thick
=
30
10 it 12
FREQUENCY IN GHz
Fig. 8. Transmission losses of a circulator with a Teflon spacer-loaded

ferrite post.
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the measured eigenvalues is shown in Fig. 9. The locus closely repre-
sents that of the ideal resonator and, therefore, bandwidth enlarge-
ment with external resonators is more effective, compared with the
case shown in Fig. 3. The effects of a Teflon spacer on the eigenvalues
are shown in Fig. 10. Since the relative dielectric constant of Teflon
is much smaller than that of ferrite, it can be considered that the
open-circuit condition can be approximately satisfied. The operation

Fig. 9. Input impedance of a circulator with a Teflon spacer-loaded
ferrite post calculated using the measured eigenvalues.
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Fig. 10. Effects of a Teflon spacer on degenerated rotational phase

eigenvalues.
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TABLE III

CompariSON oF MzAasvrED HE;;n;®° Mobpe AND CALCULATED
TEm® MopE FREQUENCIES

12

2=t
L mm |CAL{) MEA (D) L"~XIOO cAL
10 913 103 I3 il 63
9 935 104 i 231
8 964 106 i0o 13 20

mode is HEy;,. Comparison of measured frequencies and fre-
quencies caleulated by (16) is made in Table II1. Relative difference
is about 10 percent. The frequency dependence on the ferrite post
length is explained well.

The interval between resonance frequencies is more widespread
for HE,.;*® modes than HE,,,;> modes. This is one of the reasons
that dielectric spacers are usually employed.

The other resonance modes which have not been identified show
a very little dip in input impedance locus and circulation never
occurs at these mode frequencies.

IV. OPERATION MODES WITH A
TRIANGULAR FERRITE POST

A triangular ferrite post has also been used in a waveguide Y
circulator. Circulator construction is shown in Fig. 11. The operation
of a circulator with a triangular ferrite post is so far understood only
qualitatively where a broad-band matching effect is added to the
operation with a circular ferrite post. Recently, it has been shown
[13] that field analysis can be carried out for a triangular demag-
netized ferrite post by applying the triangular metal waveguide
field theory [147].

The fields and resonance frequency are rewritten briefly. Since
there are dual boundary conditions at a metal surface and open-
circuit boundary of a ferrite surface, fields in a triangular ferrite
post can be determined from fields in a triangular metal waveguide
by the duality concept [12]. To consider TM modes in the ferrite
post, TE fields of the waveguide should be employed. Fields for
TE modes in the waveguide have been solved as follows [147]:

2
H. =Xy (23)
oo
¥ = T(z,y)ei*1z (24)
27 [z V3x(m — n)y
T = il N Bt
(z,y) = cos [3b 1 (2 4+ b)] C0s o
2r (= Var(n — )y
-+ cos [3b m (2 + b)] cos %
+ oo [2_ ( + b) c0s V3T @ = m)y

metal plate

Fig. 11. Construction of a circulator with a triangular ferrite post.
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-4
2

Fig. 12. Coordinates of a triangular ferrite post.

where I, m, and n are integers, never take zero value simultaneously,
and must satisfy the following equation:

l4+m+n=0

and where b is the radius of an inscribed circle of the triangle. The
illustration of coordinates is shown in Fig. 12. The other fields are
derived from H,. Using the relations

(26)

2
X = (g) (m2 4+ mn + n?) (27)
2, 2, 2,
P 28)
Jx? oy 9z
s 4
Fri —xA (29)

resonance frequency is given as follows:

1 4\ \ \ p21/2
1= g (se) e < (7

where q is the length of the sides of .the triangle, i.e., ¢ = 2V3b, and
the integer p is the same as ! in (13)-(15). Fields in the ferrite post
are derived by the interchange H > —E, E > H, e > pu, p—e.
Resonance frequency never changes with the interchange. Modes
are designated as TM(, m,qyp*** for convenience.

When the ferrite anisotropy is small, fields in a magnetized ferrite
are approximately given by the following equations as the previous
case for a circular ferrite post:

we oF, oFE,
Hz o ——— 2 7 Y 2 _ 2
(o — ) {w " — + j(w?en — ki?) ay} (31)
we‘ ok, oK,
H = — —— e — — (e — k2
y PE——r {w e J (e — ki?) ax} (32)
H,=0 (33)
k
E, = —j=H, (34)
wWEe
k
E,=j—H, (35)
wEe

where E., is given from (23) by the interchange.

A comparison between frequencies calculated by (30), assuming
TMq_10n™" mode, and measured center frequencies of Y circulators
developed by Nippon Electric Company are shown in Fig. 13.
Measured frequencies fall fairly well on a straight line, as the theory
predicts, although they are about 20 percent higher than calculated
values. To obtain theoretically more precise frequency, the imperfect
open boundary conditions should be considered.

A sketch of the field pattern is shown in Fig. 14. The field pattern
rotates to the rotational phase eigen excitations. It is seen that cir-
cularly rotating magnetic fields are generated at the central part of
the triangle. :

V. CONCLUSION

Fields in a circular and a triangular ferrite post are solved taking
into consideration the variation along the ferrite axis. Measured
HE mode operation frequencies nearly agree with the calculated
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Fig. 14. Sketch of fields pattern for TM —10) mode. Solid lines represent
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frequencies obtained by assuming a TM mode and perfect open-
circuited boundary conditions. It is shown that the circulation occurs
at the frequencies where two HE modes interfere with each other,
besides occurring at HE mode resonance frequencies.
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New

Experimental Distinction Between Crossed-Field and
In-Line Three-Port Circuit Models for Interdigital
Transducers

W. RICHARD SMITH

Abstract—The crossed-field and in-line Mason circuit models for
interdigital surface-wave transducers give opposite predictions for
the dependence of acoustic reflection coefficients on electric load
resistance for purely resistive loads. Experiments described herein
show that the crossed-field model correctly describes the reflections
for YX quartz, ST-X quartz, and YZ lithium niobate substrates. A
low-resistance load minimizes reflections for transducers with
double electrodes operating at the fundamental synchronous fre-
quency. For single electrode transducers, optimum reflection sup-
pression may call for a load resistance comparable to the transducer
impedance.

I. INTRODUCTION

The crossed-field and in-line three-port Mason circuits [1] for
bulk-wave transducers have found wide usage as approximate
equivalent circuits for interdigital surface-wave transducers [27].
Arguments for preferring both the in-line and crossed-field models
have been suggested by various authors [3]-[6]. In addition, an
intermediate mixed model has been proposed by Milsom and Red-
wood [7]. In [8] some differences between the models are empha-
sized, and it is stated that the choice of model apparently depends
on the piezoelectric substrate.

This short paper provides an experimental basis for determining
which model gives the better representation of a particular inter-
digital transducer and piezoelectric substrate. In addition, it negates
a statement made earlier in [8] to the effect that the two models
predict identical results for all transducer three-port transfer proper-
ties in the weak-coupling limit. The new finding reported here is that
measurements of transducer acoustic reflection coefficients as a
function of electric load resistance can determine which model is
applicable, since the two models predict opposite behavior for purely
resistive loads. Specific results are given in the following for ‘“‘double
electrode’” [9] transducers on YX quartz, ST-X quartz, and YZ
lithium niobate, and for a ‘‘single electrode’” transducer on YZ
lithium niobate.

I1. ACOUSTIC REFLECTIONS

The experimental distinetion between the crossed-field and in-line
Mason circuits is based on measuring the acoustic reflection coeffi-
cient of a transducer as a function of the electric load. We begin by
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Fig. 1. Mass/electrical loading reflections of single and double elec-

trodes.

distinguishing the two causes of surface-wave reflections in inter-
digital transducers.

The first cause is the fact that metal electrodes short out the tan-
gential electric field at the crystal surface and introduce mechanical
loading, so that the electrode and gap regions have different apparent
wave impedances [10], [11]. The second cause is that forward and
backward surface waves are ‘‘regenerated’’ in the transdueer by the
voltage that the incident surface wave delivers to the electric load.
The magnitude of the regenerated surface waves can be reduced (at
a sacrifice in insertion loss) by varying the load impedance.

In ordinary single electrode transducers [Fig. 1(a)], the
“mass/electrical loading” (MEL) reflections can become par-
ticularly troublesome because the metal stripes are spaced by one-
half wavelength, causing MEL reflections to add in phase. The
double electrode geometry [9] [Fig. 1(b)] provides a high degree
of cancellation of the MEL reflections from successive electrodes, so
that the reflections in double electrode devices are almost entirely
of the regenerated wave (RW) type. Our purpose here is to deter-
mine a transducer circuit model which accurately describes the total
(MEL and RW) reflections with particular emphasis on their rela-
tion to the electric load.

III. MASON CIRCUIT MODELS

The Mason circuits for bulk-wave transducers have found wide
usage in surface-wave work since they give a three-port description
of interdigital transducers, either periodic or dispersive with many
nonidentical electrodes. In order to account for the different acoustic-
wave impedances of the electrode and gap regions, the circuit of
Fig. 2 has been used by at least two authors {107, [117. In this circuit
the unit cell of length d is subdivided into a metallized and an un-
metallized region, with wave impedances Z,, and Z, in the corre-
sponding acoustic transmission lines.

Synchronous operation is defined by the condition that d be equal
to one-half acoustic wavelength (A = 2d), and the circuit of Fig. 2
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REFLECTION )

(o)

Mason circuit model for single electrodes, including an acoustic-

Fig. 2.
wave impedance discontinuity.



